G2/M Arrest Sensitises Erythroid Leukemia Cells to TRAIL-induced Apoptosis
نویسندگان
چکیده
Erythroid leukemia is a heterogeneous disease with very poor prognosis. It may arise de novo, secondary to myelodysplastic syndrome, blast crisis phase of chronic myeloid leukemia, or after cytotoxic therapy of acute myeloid leukemia. The current mainstream treatment of erythroleukemia is cytarabine and anthracyclin-based chemotherapy or bone marrow transplantation. In the current study we found that cytarabine or inhibition of the DNA-damage-activated protein kinase, ATM, induce G2/M arrest and sensitised K562 erythroleukemia cells to tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). Arresting cells in G2/M with microtubule-disrupting drugs also enhanced TRAIL-sensitivity. Synchronisation or separation of the leukemia cells in different stages of the cell cycle by elutriation confirmed that the cells in G1 and G2/M were sensitive to TRAIL. Interestingly, this sensitivity was associated with cell cycle-dependent oscillation of cFLIP expression. In summary, we found that combination of cytostatic drugs with TRAIL can be an effective treatment for erythroid leukemia.
منابع مشابه
The Chk1 inhibitor AZD7762 sensitises p53 mutant breast cancer cells to radiation in vitro and in vivo.
AZD7762, a novel checkpoint kinase 1 (Chk 1)inhibitor, has been proven to sensitize various tumor cells to DNA damage. However, whether or not AZD7762 sensitizes breast cancer cells to radiation has not been defined. In the present study, we aimed to demonstrate for the first time, that AZD7762 not only promotes radiation-induced apoptosis and mitotic catastrophe of p53 mutant T47D breast cance...
متن کاملThe importance of abrogation of G2-phase arrest in combined effect of TRAIL and ionizing radiation.
BACKGROUND In this work we studied the relationship between the enhanced expression of DR5 receptor and the effect of combination of TRAIL and ionizing radiation on cell cycle arrest and apoptosis induction in human leukemia cell line HL-60. MATERIAL AND METHODS DR5, APO2.7 and cell cycle were analyzed by flow cytometry. Proteins Bid and Mcl-1 were analyzed by Western-blotting. For clonogenic...
متن کاملChloroquine augments TRAIL-induced apoptosis and induces G2/M phase arrest in human pancreatic cancer cells
Autophagy contributes to the treatment-resistance of many types of cancers, and chloroquine (CQ) inhibits autophagy. The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) kills cancer cells but is minimally cytotoxic to normal cells. However, because the therapeutic efficacy of TRAIL is limited, it is necessary to augment TRAIL-induced anti-tumor effects. In this study, we e...
متن کاملTrichostatin A sensitises rheumatoid arthritis synovial fibroblasts for TRAIL-induced apoptosis.
BACKGROUND Histone acetylation/deacetylation has a critical role in the regulation of transcription by altering the chromatin structure. OBJECTIVE To analyse the effect of trichostatin A (TSA), a streptomyces metabolite which specifically inhibits mammalian histone deacetylases, on TRAIL-induced apoptosis of rheumatoid arthritis synovial fibroblasts (RASF). METHODS Apoptotic cells were dete...
متن کاملArsenic trioxide-induced apoptosis in myeloma cells: p53-dependent G1 or G2/M cell cycle arrest, activation of caspase-8 or caspase-9, and synergy with APO2/TRAIL.
Arsenic trioxide (ATO) has been shown to induce differentiation and apoptosis in acute promyelocytic leukemia (APL) cells concomitant with down-regulation of the PML-RARalpha fusion protein, a product of the t(15:17) translocation characteristic of APL leukemic cells. However, ATO is also a potent inducer of apoptosis in a number of other cancer cells lacking the t(15:17) translocation. The exa...
متن کامل